Here's a table that I find practical to determine approximate State of Charge (SoC):
% of Charge - - - - - - - Charging - - - -- - - At Rest - - - - - Discharging
100 - - - - - - - - - - - - 14.75 - - - - - - - - 12.70 - - - - - - 12.50
90 - - - - - - - - - - - - - 13.75 - - - - - - - - 12.58 - - - - - - 12.40
80 - - - - - - - - - - - - - 13.45 - - - - - - - - 12.46 - - - - - - 12.30
70 - - - - - - - - - - - - - 13.30 - - - - - - - - 12.36 - - - - - - 12.25
60 - - - - - - - - - - - - - 13.20 - - - - - - - - 12.28 - - - - - - 12.15
50 - - - - - - - - - - - - - 13.10 - - - - - - - - 12.20 - - - - - - 12.00
40 - - - - - - - - - - - - - 12.95 - - - - - - - - 12.12 - - - - - - 11.90
30 - - - - - - - - - - - - - 12.75 - - - - - - - - 12.02 - - - - - - 11.70
20 - - - - - - - - - - - - - 12.55 - - - - - - - - 11.88 - - - - - - 11.50
10 - - - - - - - - - - - - - 12.25 - - - - - - - - 11.72 - - - - - - 11.25
The voltages under charging and discharging should be measured with at least C/20 current in/out, and the figures are @ around 26.7deg. C. at 0deg. C, one should add around 0.6-0,8v for charging, and subtract around 0.6v for discharging...
Ofcourse, this is only approximate, but gives one a good idea of the state of the battery when one are not able to measure the Specific Gravity (SG).).
Edit:
These figures are valid for Lead Acid batteries; the Lithium based batteries are a whole another matter when it comes to determine SoC...